Safety and Bias Mitigation in Fine-Tuned Models Training Course
Safety and Bias Mitigation in Fine-Tuned Models is a growing concern as AI becomes more embedded in decision-making across industries and regulatory standards continue to evolve.
This instructor-led, live training (online or onsite) is aimed at intermediate-level ML engineers and AI compliance professionals who wish to identify, evaluate, and reduce safety risks and biases in fine-tuned language models.
By the end of this training, participants will be able to:
- Understand the ethical and regulatory context for safe AI systems.
- Identify and evaluate common forms of bias in fine-tuned models.
- Apply bias mitigation techniques during and after training.
- Design and audit models for safety, transparency, and fairness.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Foundations of Safe and Fair AI
- Key concepts: safety, bias, fairness, transparency
- Types of bias: dataset, representation, algorithmic
- Overview of regulatory frameworks (EU AI Act, GDPR, etc.)
Bias in Fine-Tuned Models
- How fine-tuning can introduce or amplify bias
- Case studies and real-world failures
- Identifying bias in datasets and model predictions
Techniques for Bias Mitigation
- Data-level strategies (rebalancing, augmentation)
- In-training strategies (regularization, adversarial debiasing)
- Post-processing strategies (output filtering, calibration)
Model Safety and Robustness
- Detecting unsafe or harmful outputs
- Adversarial input handling
- Red teaming and stress testing fine-tuned models
Auditing and Monitoring AI Systems
- Bias and fairness evaluation metrics (e.g., demographic parity)
- Explainability tools and transparency frameworks
- Ongoing monitoring and governance practices
Toolkits and Hands-On Practice
- Using open-source libraries (e.g., Fairlearn, Transformers, CheckList)
- Hands-on: Detecting and mitigating bias in a fine-tuned model
- Generating safe outputs through prompt design and constraints
Enterprise Use Cases and Compliance Readiness
- Best practices for integrating safety in LLM workflows
- Documentation and model cards for compliance
- Preparing for audits and external reviews
Summary and Next Steps
Requirements
- An understanding of machine learning models and training processes
- Experience working with fine-tuning and LLMs
- Familiarity with Python and NLP concepts
Audience
- AI compliance teams
- ML engineers
Open Training Courses require 5+ participants.
Safety and Bias Mitigation in Fine-Tuned Models Training Course - Booking
Safety and Bias Mitigation in Fine-Tuned Models Training Course - Enquiry
Safety and Bias Mitigation in Fine-Tuned Models - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Related Courses
Advanced Techniques in Transfer Learning
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at advanced-level machine learning professionals who wish to master cutting-edge transfer learning techniques and apply them to complex real-world problems.
By the end of this training, participants will be able to:
- Understand advanced concepts and methodologies in transfer learning.
- Implement domain-specific adaptation techniques for pre-trained models.
- Apply continual learning to manage evolving tasks and datasets.
- Master multi-task fine-tuning to enhance model performance across tasks.
Deploying Fine-Tuned Models in Production
21 HoursThis instructor-led, live training in India (online or onsite) is aimed at advanced-level professionals who wish to deploy fine-tuned models reliably and efficiently.
By the end of this training, participants will be able to:
- Understand the challenges of deploying fine-tuned models into production.
- Containerize and deploy models using tools like Docker and Kubernetes.
- Implement monitoring and logging for deployed models.
- Optimize models for latency and scalability in real-world scenarios.
Domain-Specific Fine-Tuning for Finance
21 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level professionals who wish to gain practical skills in customizing AI models for critical financial tasks.
By the end of this training, participants will be able to:
- Understand the fundamentals of fine-tuning for finance applications.
- Leverage pre-trained models for domain-specific tasks in finance.
- Apply techniques for fraud detection, risk assessment, and financial advice generation.
- Ensure compliance with financial regulations such as GDPR and SOX.
- Implement data security and ethical AI practices in financial applications.
Fine-Tuning Models and Large Language Models (LLMs)
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to customize pre-trained models for specific tasks and datasets.
By the end of this training, participants will be able to:
- Understand the principles of fine-tuning and its applications.
- Prepare datasets for fine-tuning pre-trained models.
- Fine-tune large language models (LLMs) for NLP tasks.
- Optimize model performance and address common challenges.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level developers and AI practitioners who wish to implement fine-tuning strategies for large models without the need for extensive computational resources.
By the end of this training, participants will be able to:
- Understand the principles of Low-Rank Adaptation (LoRA).
- Implement LoRA for efficient fine-tuning of large models.
- Optimize fine-tuning for resource-constrained environments.
- Evaluate and deploy LoRA-tuned models for practical applications.
Fine-Tuning Multimodal Models
28 HoursThis instructor-led, live training in India (online or onsite) is aimed at advanced-level professionals who wish to master multimodal model fine-tuning for innovative AI solutions.
By the end of this training, participants will be able to:
- Understand the architecture of multimodal models like CLIP and Flamingo.
- Prepare and preprocess multimodal datasets effectively.
- Fine-tune multimodal models for specific tasks.
- Optimize models for real-world applications and performance.
Fine-Tuning for Natural Language Processing (NLP)
21 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level professionals who wish to enhance their NLP projects through the effective fine-tuning of pre-trained language models.
By the end of this training, participants will be able to:
- Understand the fundamentals of fine-tuning for NLP tasks.
- Fine-tune pre-trained models such as GPT, BERT, and T5 for specific NLP applications.
- Optimize hyperparameters for improved model performance.
- Evaluate and deploy fine-tuned models in real-world scenarios.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HoursThis instructor-led, live training in India (online or onsite) is aimed at advanced-level AI researchers, machine learning engineers, and developers who wish to fine-tune DeepSeek LLM models to create specialized AI applications tailored to specific industries, domains, or business needs.
By the end of this training, participants will be able to:
- Understand the architecture and capabilities of DeepSeek models, including DeepSeek-R1 and DeepSeek-V3.
- Prepare datasets and preprocess data for fine-tuning.
- Fine-tune DeepSeek LLM for domain-specific applications.
- Optimize and deploy fine-tuned models efficiently.
Fine-Tuning Large Language Models Using QLoRA
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level to advanced-level machine learning engineers, AI developers, and data scientists who wish to learn how to use QLoRA to efficiently fine-tune large models for specific tasks and customizations.
By the end of this training, participants will be able to:
- Understand the theory behind QLoRA and quantization techniques for LLMs.
- Implement QLoRA in fine-tuning large language models for domain-specific applications.
- Optimize fine-tuning performance on limited computational resources using quantization.
- Deploy and evaluate fine-tuned models in real-world applications efficiently.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level ML practitioners and AI developers who wish to fine-tune and deploy open-weight models like LLaMA, Mistral, and Qwen for specific business or internal applications.
By the end of this training, participants will be able to:
- Understand the ecosystem and differences between open-source LLMs.
- Prepare datasets and fine-tuning configurations for models like LLaMA, Mistral, and Qwen.
- Execute fine-tuning pipelines using Hugging Face Transformers and PEFT.
- Evaluate, save, and deploy fine-tuned models in secure environments.
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level NLP engineers and knowledge management teams who wish to fine-tune RAG pipelines to enhance performance in question answering, enterprise search, and summarization use cases.
By the end of this training, participants will be able to:
- Understand the architecture and workflow of RAG systems.
- Fine-tune retriever and generator components for domain-specific data.
- Evaluate RAG performance and apply improvements through PEFT techniques.
- Deploy optimized RAG systems for internal or production use.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at advanced-level machine learning engineers and AI researchers who wish to apply RLHF to fine-tune large AI models for superior performance, safety, and alignment.
By the end of this training, participants will be able to:
- Understand the theoretical foundations of RLHF and why it is essential in modern AI development.
- Implement reward models based on human feedback to guide reinforcement learning processes.
- Fine-tune large language models using RLHF techniques to align outputs with human preferences.
- Apply best practices for scaling RLHF workflows for production-grade AI systems.
Fine-Tuning Vision-Language Models (VLMs)
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at advanced-level computer vision engineers and AI developers who wish to fine-tune VLMs such as CLIP and Flamingo to improve performance on industry-specific visual-text tasks.
By the end of this training, participants will be able to:
- Understand the architecture and pretraining methods of vision-language models.
- Fine-tune VLMs for classification, retrieval, captioning, or multimodal QA.
- Prepare datasets and apply PEFT strategies to reduce resource usage.
- Evaluate and deploy customized VLMs in production environments.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 HoursThis instructor-led, live training in India (online or onsite) is aimed at advanced-level professionals who wish to master techniques for optimizing large models for cost-effective fine-tuning in real-world scenarios.
By the end of this training, participants will be able to:
- Understand the challenges of fine-tuning large models.
- Apply distributed training techniques to large models.
- Leverage model quantization and pruning for efficiency.
- Optimize hardware utilization for fine-tuning tasks.
- Deploy fine-tuned models effectively in production environments.
Prompt Engineering and Few-Shot Fine-Tuning
14 HoursThis instructor-led, live training in India (online or onsite) is aimed at intermediate-level professionals who wish to leverage the power of prompt engineering and few-shot learning to optimize LLM performance for real-world applications.
By the end of this training, participants will be able to:
- Understand the principles of prompt engineering and few-shot learning.
- Design effective prompts for various NLP tasks.
- Leverage few-shot techniques to adapt LLMs with minimal data.
- Optimize LLM performance for practical applications.